Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
1.
Free Radic Res ; : 1-12, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38572725

RESUMO

Ferroptosis has been characterized as a form of iron-dependent regulated cell death accompanied by an accumulation of reactive oxygen species and lipid oxidation products along with typical morphological alterations in mitochondria. Ferroptosis is activated by diverse triggers and inhibited by ferrostatin-1 and liproxstatin-1, apart from iron chelators and several antioxidants, and the process is implicated in multiple pathological conditions. There are, however, certain ambiguities about ferroptosis, especially regarding the final executioner of cell death subsequent to the accumulation of ROS. This study uses a typical inducer of ferroptosis such as erastin on SH-SY5Y cells, and shows clearly that ferroptotic death of cells is accompanied by the loss of mitochondrial membrane potential and intracellular ATP content along with an accumulation of oxidative stress markers. All these are prevented by ferrostatin-1 and liproxstatin-1. Additionally, cyclosporine A prevents mitochondrial alterations and cell death induced by erastin implying the crucial role of mitochondrial permeability transition pore (mPTP) activation in ferroptotic death. Furthermore, an accumulation of α-synuclein occurs during erastin induced ferroptosis which can be inhibited by ferrostatin-1 and liproxstatin-1. When the knock-down of α-synuclein expression is performed by specific siRNA treatment of SH-SY5Y cells, the mitochondrial impairment and ferroptotic death of the cells induced by erastin are markedly prevented. Thus, α-synuclein through the involvement of mPTP appears to be the key executioner protein of ferroptosis induced by erastin, but it needs to be verified if it is a generalized mechanism of ferroptosis by using other inducers and cell lines.

2.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612493

RESUMO

Adrenergic pathways represent the main channel of communication between the nervous system and the immune system. During inflammation, blood monocytes migrate within tissue and differentiate into macrophages, which polarize to M1 or M2 macrophages with tissue-damaging or -reparative properties, respectively. This study investigates whether the ß-adrenergic receptor (ß-AR)-blocking drug propranolol modulates the monocyte-to-macrophage differentiation process and further influences macrophages in their polarization toward M1- and M2-like phenotypes. Six-day-human monocytes were cultured with M-CSF in the presence or absence of propranolol and then activated toward an M1 pro-inflammatory state or an M2 anti-inflammatory state. The chronic exposure of monocytes to propranolol during their differentiation into macrophages promoted the increase in the M1 marker CD16 and in the M2 markers CD206 and CD163 and peroxisome proliferator-activated receptor É£ expression. It also increased endocytosis and the release of IL-10, whereas it reduced physiological reactive oxygen species. Exposure to the pro-inflammatory conditions of propranolol-differentiated macrophages resulted in an anti-inflammatory promoting effect. At the molecular level, propranolol upregulated the expression of the oxidative stress regulators NRF2, heme oxygenase-1 and NQO1. By contributing to regulating macrophage activities, propranolol may represent a novel anti-inflammatory and immunomodulating compound with relevant therapeutic potential in several inflammatory diseases.


Assuntos
Monócitos , Propranolol , Humanos , Propranolol/farmacologia , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2 , Macrófagos , Anti-Inflamatórios/farmacologia
3.
Open Life Sci ; 19(1): 20220842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585631

RESUMO

The central nervous system is essential for maintaining homeostasis and controlling the body's physiological functions. However, its biochemical characteristics make it highly vulnerable to oxidative damage, which is a common factor in neurodegenerative diseases like amyotrophic lateral sclerosis (ALS). ALS is a leading cause of motor neuron disease, characterized by a rapidly progressing and incurable condition. ALS often results in death from respiratory failure within 3-5 years from the onset of the first symptoms, underscoring the urgent need to address this medical challenge. The aim of this study is to present available data supporting the role of oxidative stress in the mechanisms underlying ALS and to discuss potential antioxidant therapies currently in development. These therapies aim to improve the quality of life and life expectancy for patients affected by this devastating disease.

4.
Arch Biochem Biophys ; 756: 109989, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38621446

RESUMO

It is known that more than 10 % of genetic diseases are caused by a mutation in protein-coding mRNA (premature termination codon; PTC). mRNAs with an early stop codon are degraded by the cellular surveillance process known as nonsense-mediated mRNA decay (NMD), which prevents the synthesis of C-terminally truncated proteins. Up-frameshift-1 (UPF1) has been reported to be involved in the downregulation of various cancers, and low expression of UPF1 was shown to correlate with poor prognosis. It is known that UPF1 is a master regulator of nonsense-mediated mRNA decay (NMD). UPF1 may also function as an E3 ligase and degrade target proteins without using mRNA decay mechanisms. Increasing evidence indicates that UPF1 could serve as a good biomarker for cancer diagnosis and treatment for future therapeutic applications. Long non-coding RNAs (lncRNAs) have the ability to bind different proteins and regulate gene expression; this role in cancer cells has already been identified by different studies. This article provides an overview of the aberrant expression of UPF1, its functional properties, and molecular processes during cancer for clinical applications in cancer. We also discussed the interactions of lncRNA with UPF1 for cell growth during tumorigenesis.

5.
Eur J Med Chem ; 270: 116355, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555855

RESUMO

By controlling several antioxidant and detoxifying genes at the transcriptional level, including NAD(P)H quinone oxidoreductase 1 (NQO1), multidrug resistance-associated proteins (MRPs), UDP-glucuronosyltransferase (UGT), glutamate-cysteine ligase catalytic (GCLC) and modifier (GCLM) subunits, glutathione S-transferase (GST), sulfiredoxin1 (SRXN1), and heme-oxygenase-1 (HMOX1), the KEAP1/NRF2 pathway plays a crucial role in the oxidative stress response. Accordingly, the discovery of modulators of this pathway, activating cellular signaling through NRF2, and targeting the antioxidant response element (ARE) genes is pivotal for the development of effective antioxidant agents. In this context, natural products could represent promising drug candidates for supplementation to provide antioxidant capacity to human cells. In recent decades, by coupling in silico and experimental methods, several natural products have been characterized to exert antioxidant effects by targeting the KEAP1/NRF2 pathway. In this review article, we analyze several natural products that were investigated experimentally and in silico for their ability to modulate KEAP1/NRF2 by non-covalent and covalent mechanisms. These latter represent the two main sections of this article. For each class of inhibitors, we reviewed their antioxidant effects and potential therapeutic applications, and where possible, we analyzed the structure-activity relationship (SAR). Moreover, the main computational techniques used for the most promising identified compounds are detailed in this survey, providing an updated view on the development of natural products as antioxidant agents.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Estresse Oxidativo , Elementos de Resposta Antioxidante
6.
Antioxidants (Basel) ; 13(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38539877

RESUMO

In recent years, research on the discovery of natural compounds with potent antioxidant properties has resulted in growing interest in these compounds due to their potential therapeutic applications in oxidative-stress-related diseases. Argan oil, derived from the kernels of a native tree from Morocco, Argania spinosa, is renowned for its rich composition of bioactive compounds, prominently tocopherols, polyphenols, and fatty acids. Interestingly, a large body of data has shown that several components of argan oil activate the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, playing a crucial role in the cellular defense against oxidative stress. Activation of this Nrf2 pathway by argan oil components leads to the increased expression of downstream target proteins like NAD(P)H quinone oxidoreductase (NQO1), superoxide dismutase (SOD), heme oxygenase 1 (HO-1), and catalase (CAT). Such Nrf2 activation accounts for several health benefits related to antioxidant defense, anti-inflammatory effects, cardiovascular health, and neuroprotection in organisms. Furthermore, the synergistic action of the bioactive compounds in argan oil enhances the Nrf2 pathway. Accordingly, the modulation of the Kelch-like ECH associated protein 1 (Keap1)/Nrf2 signaling pathway by these components highlights the potential of argan oil in protecting cells from oxidative stress and underlines its relevance in dietetic prevention and therapeutic applications. This review aims to provide an overview of how major compounds in argan oil activate the Nrf2 pathway, updating our knowledge on their mechanisms of action and associated health benefits.

7.
Biomedicines ; 12(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38540114

RESUMO

Stroke is a major contributor to global mortality and disability. While reperfusion is essential for preventing neuronal death in the penumbra, it also triggers cerebral ischemia-reperfusion injury, a paradoxical injury primarily caused by oxidative stress, inflammation, and blood-brain barrier disruption. An oxidative burst inflicts marked cellular damage, ranging from alterations in mitochondrial function to lipid peroxidation and the activation of intricate signalling pathways that can even lead to cell death. Thus, given the pivotal role of oxidative stress in the mechanisms of cerebral ischemia-reperfusion injury, the reinforcement of the antioxidant defence system has been proposed as a protective approach. Although this strategy has proven to be successful in experimental models, its translation into clinical practice has yielded inconsistent results. However, it should be considered that the availability of numerous antioxidant molecules with a wide range of chemical properties can affect the extent of injury; several groups of antioxidant molecules, including polyphenols, carotenoids, and vitamins, among other antioxidant compounds, can mitigate this damage by intervening in multiple signalling pathways at various stages. Multiple clinical trials have previously been conducted to evaluate these properties using melatonin, acetyl-L-carnitine, chrysanthemum extract, edaravone dexborneol, saffron, coenzyme Q10, and oleoylethanolamide, among other treatments. Therefore, multi-antioxidant therapy emerges as a promising novel therapeutic option due to the potential synergistic effect provided by the simultaneous roles of the individual compounds.

8.
Cancer Drug Resist ; 7: 8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434765

RESUMO

Oxidative stress is characterized by the deregulation of the redox state in the cells, which plays a role in the initiation of various types of cancers. The activity of galectin-1 (Gal-1) depends on the cell redox state and the redox state of the microenvironment. Gal-1 expression has been related to many different tumor types, as it plays important roles in several processes involved in cancer progression, such as apoptosis, cell migration, adhesion, and immune response. The erythroid-2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) signaling pathway is a crucial mechanism involved in both cell survival and cell defense against oxidative stress. In this review, we delve into the cellular and molecular roles played by Gal-1 in the context of oxidative stress onset in cancer cells, particularly focusing on its involvement in activating the Nrf2/Keap1 signaling pathway. The emerging evidence concerning the anti-apoptotic effect of Gal-1, together with its ability to sustain the activation of the Nrf2 pathway in counteracting oxidative stress, supports the role of Gal-1 in the promotion of tumor cells proliferation, immuno-suppression, and anti-tumor drug resistance, thus highlighting that the inhibition of Gal-1 emerges as a potential strategy for the restraint and regression of tumor progression. Overall, a deeper understanding of the multi-functionality and disease-specific expression profiling of Gal-1 will be crucial for the design and development of novel Gal-1 inhibitors as anticancer agents. Excitingly, although it is still understudied, the ever-growing knowledge of the sophisticated interplay between Gal-1 and Nrf2/Keap1 will enable researchers to gain valuable insights into the underlying causes of carcinogenesis and metastasis.

9.
Amino Acids ; 56(1): 23, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506925

RESUMO

Oxidative stress can affect the protein, lipids, and DNA of the cells and thus, play a crucial role in several pathophysiological conditions. It has already been established that oxidative stress has a close association with inflammation via nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. Amino acids are notably the building block of proteins and constitute the major class of nitrogen-containing natural products of medicinal importance. They exhibit a broad spectrum of biological activities, including the ability to activate NRF2, a transcription factor that regulates endogenous antioxidant responses. Moreover, amino acids may act as synergistic antioxidants as part of our dietary supplementations. This has aroused research interest in the NRF2-inducing activity of amino acids. Interestingly, amino acids' activation of NRF2-Kelch-like ECH-associated protein 1 (KEAP1) signaling pathway exerts therapeutic effects in several diseases. Therefore, the present review will discuss the relationship between different amino acids and activation of NRF2-KEAP1 signaling pathway pinning their anti-inflammatory and antioxidant properties. We also discussed amino acids formulations and their applications as therapeutics. This will broaden the prospect of the therapeutic applications of amino acids in a myriad of inflammation and oxidative stress-related diseases. This will provide an insight for designing and developing new chemical entities as NRF2 activators.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Humanos , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Aminoácidos/metabolismo , Estresse Oxidativo , Inflamação/tratamento farmacológico
10.
J Biochem Mol Toxicol ; 38(3): e23661, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369721

RESUMO

Phenothiazines (PTZs) are an emerging group of molecules showing effectiveness toward redox signaling and reduction of oxidative injury to cells, via the activation on Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (Nrf2). Although several electrophilic and indirect Nrf2 activators have been reported, the risk of "off-target" effect due to the complexity of their molecular mechanisms of action, has aroused research interest toward non-electrophilic and direct modulators of Nrf2 pathway, such as PTZs. This review represents the first overview on the roles of PTZs as non-electrophilic Nrf2 activator and free radical scavengers, as well as on their potential therapeutic effects in oxidative stress-mediated diseases. Here, we provide a collective and comprehensive information on the PTZs ability to scavenge free radicals and activate the Nrf2 signaling pathway, with the aim to broaden the knowledge of their therapeutic potentials and to stimulate innovative research ideas.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Fenotiazinas , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Sequestradores de Radicais Livres , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais , Fenotiazinas/farmacologia
11.
Toxicol Appl Pharmacol ; 484: 116866, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367674

RESUMO

BACKGROUND: ABC transporter-mediated multidrug resistance (MDR) remains a major obstacle for cancer pharmacological treatment. Some tyrosine kinase inhibitors (TKIs) have been shown to reverse MDR. The present study was designed to evaluate for the first time whether foretinib, a multitargeted TKI, can circumvent ABCB1 and ABCG2-mediated MDR in treatment-resistant cancer models. METHODS: Accumulation of fluorescent substrates of ABCB1 and ABCG2 in ABCB1-overexpressing MES-SA/DX5 and ABCG2-overexpressing MCF-7/MX and their parenteral cells was evaluated by flow cytometry. The growth inhibitory activity of single and combination therapy of foretinib and chemotherapeutic drugs on MDR cells was examined by MTT assay. Analysis of combined interaction effects was performed using CalcuSyn software. RESULTS: It was firstly proved that foretinib increased the intracellular accumulation of rhodamine 123 and mitoxantrone in MES-SA/DX5 and MCF-7/MX cancer cells, with accumulation ratios of 12 and 2.2 at 25 µM concentration, respectively. However, it did not affect the accumulation of fluorescent substrates in the parental cells. Moreover, foretinib synergistically improved the cytotoxic effects of doxorubicin and mitoxantrone. The means of combination index (CI) values at fraction affected (Fa) values of 0.5, 0.75, and 0.9 were 0.64 ± 0.08 and 0.47 ± 0.09, in MES-SA/DX5 and MCF-7/MX cancer cells, respectively. In silico analysis also suggested that the drug-binding domain of ABCB1 and ABCG2 transporters could be considered as potential target for foretinib. CONCLUSION: Overall, our results suggest that foretinib can target MDR-linked ABCB1 and ABCG2 transporters in clinical cancer therapy.


Assuntos
Anilidas , Antineoplásicos , Neoplasias , Quinolinas , Humanos , Proteínas Proto-Oncogênicas c-met/farmacologia , Mitoxantrona/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Resistencia a Medicamentos Antineoplásicos , Resistência a Múltiplos Medicamentos , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas de Neoplasias , Subfamília B de Transportador de Cassetes de Ligação de ATP
12.
Antioxidants (Basel) ; 13(2)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38397791

RESUMO

Infertility represents a significant global health challenge, affecting more than 12% of couples worldwide, and most cases of infertility are caused by male factors. Several pathological pathways are implicated in male infertility. The main mechanisms involved are driven by the loss of reduction-oxidation (redox) homeostasis and the resulting oxidative damage as well as the chronic inflammatory process. Increased or severe oxidative stress leads to sperm plasma membrane and DNA oxidative damage, dysregulated RNA processing, and telomere destruction. The signaling pathways of these molecular events are also regulated by Nuclear factor-E2-related factor 2 (Nrf2). The causes of male infertility, the role of oxidative stress in male infertility and the Keap1-Nrf2 antioxidant pathway are reviewed. This review highlights the regulatory role of Nrf2 in the balance between oxidants and antioxidants as relevant mechanisms to male fertility. Nrf2 is involved in the regulation of spermatogenesis and sperm quality. Establishing a link between Nrf2 signaling pathways and the regulation of male fertility provides the basis for molecular modulation of inflammatory processes, reactive oxygen species generation, and the antioxidant molecular network, including the Nrf2-regulated antioxidant response, to improve male reproductive outcomes.

13.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38399446

RESUMO

Stilbenes are phytoalexins, and their biosynthesis can occur through a natural route (shikimate precursor) or an alternative route (in microorganism cultures). The latter is a metabolic engineering strategy to enhance production due to stilbenes recognized pharmacological and medicinal potential. It is believed that in the human body, these potential activities can be modulated by the regulation of the nuclear factor erythroid derived 2 (Nrf2), which increases the expression of antioxidant enzymes. Given this, our review aims to critically analyze evidence regarding E-stilbenes in human metabolism and the Nrf2 activation pathway, with an emphasis on inflammatory and oxidative stress aspects related to the pathophysiology of chronic and metabolic diseases. In this comprehensive literature review, it can be observed that despite the broad number of stilbenes, those most frequently explored in clinical trials and preclinical studies (in vitro and in vivo) were resveratrol, piceatannol, pterostilbene, polydatin, stilbestrol, and pinosylvin. In some cases, depending on the dose/concentration and chemical nature of the stilbene, it was possible to identify activation of the Nrf2 pathway. Furthermore, the use of some experimental models presented a challenge in comparing results. In view of the above, it can be suggested that E-stilbenes have a relationship with the Nrf2 pathway, whether directly or indirectly, through different biological pathways, and in different diseases or conditions that are mainly related to inflammation and oxidative stress.

14.
J Adv Res ; 55: 103-118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36871616

RESUMO

BACKGROUND: Cancer management faces multiple obstacles, including resistance to current therapeutic approaches. In the face of challenging microenvironments, cancer cells adapt metabolically to maintain their supply of energy and precursor molecules for biosynthesis and thus sustain rapid proliferation and tumor growth. Among the various metabolic adaptations observed in cancer cells, the altered glucose metabolism is the most widely studied. The aberrant glycolytic modification in cancer cells has been associated with rapid cell division, tumor growth, cancer progression, and drug resistance. The higher rates of glycolysis in cancer cells, as a hallmark of cancer progression, is modulated by the transcription factor hypoxia inducible factor 1 alpha (HIF-1α), a downstream target of the PI3K/Akt signaling, the most deregulated pathway in cancer. AIM OF REVIEW: We provide a detailed overview of current, primarily experimental, evidence on the potential effectiveness of flavonoids to combat aberrant glycolysis-induced resistance of cancer cells to conventional and targeted therapies. The manuscript focuses primarily on flavonoids reducing cancer resistance via affecting PI3K/Akt, HIF-1α (as the transcription factor critical for glucose metabolism of cancer cells that is regulated by PI3K/Akt pathway), and key glycolytic mediators downstream of PI3K/Akt/HIF-1α signaling (glucose transporters and key glycolytic enzymes). KEY SCIENTIFIC CONCEPTS OF REVIEW: The working hypothesis of the manuscript proposes HIF-1α - the transcription factor critical for glucose metabolism of cancer cells regulated by PI3K/Akt pathway as an attractive target for application of flavonoids to mitigate cancer resistance. Phytochemicals represent a source of promising substances for cancer management applicable to primary, secondary, and tertiary care. However, accurate patient stratification and individualized patient profiling represent crucial steps in the paradigm shift from reactive to predictive, preventive, and personalized medicine (PPPM / 3PM). The article is focused on targeting molecular patterns by natural substances and provides evidence-based recommendations for the 3PM relevant implementation.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Flavonoides , Medicina de Precisão , Transdução de Sinais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fatores de Transcrição , Glucose/metabolismo , Microambiente Tumoral
15.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1865-1874, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37773525

RESUMO

The marine environment has been recognized as a prolific source of potent bioactive compounds with significant anticancer properties. Among these, heteronemin, a sesterterpenoid-type natural product, has shown promise. This study delves into the potential of heteronemin as a ferroptotic agent against pancreatic cancer, using the Panc-1 cell line as a model. The cytotoxic potential of heteronemin was assessed using cell viability assays. Furthermore, its effect on lipid peroxidation was determined spectrophotometrically, while the changes it induced in autophagy- and ferritin-related protein expressions were evaluated using immunoblotting techniques. Various cell-based tests were employed to scrutinize its anticancer efficacy. Heteronemin displayed a notable cytotoxic effect, reducing cell viability by 50% at a concentration of 55 nM. This cytotoxicity was discernibly linked to ferroptosis, as evidenced by the reversal of cell death upon treatment with the ferroptosis inhibitor, ferrostatin-1. Heteronemin treatment led to a marked increase in ferroptosis markers and malondialdehyde (MDA) levels. Conversely, the expression of glutathione peroxidase-4 (GPX4), a key anti-ferroptotic protein, was suppressed. Furthermore, significant modulations in the expression of ferritinophagy- and iron-related proteins such as Atg5, Atg7, FTL, STEAP3, and DMT-1 were evident post-treatment (p < 0.05). This study underscores the potential of heteronemin as a ferroptosis inducer in pancreatic cancer cells. Given its robust cytotoxicity, heteronemin emerges as a promising lead compound for further exploration in cancer therapeutics.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Ferro/metabolismo , Morte Celular , Terpenos/farmacologia , Antineoplásicos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico
16.
Redox Rep ; 29(1): 2289740, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38108325

RESUMO

Increased life expectancy, attributed to improved access to healthcare and drug development, has led to an increase in multimorbidity, a key contributor to polypharmacy. Polypharmacy is characterised by its association with a variety of adverse events in the older persons. The mechanisms involved in the development of age-related chronic diseases are largely unknown; however, altered redox homeostasis due to ageing is one of the main theories. In this context, the present review explores the development and interaction between different age-related diseases, mainly linked by oxidative stress. In addition, drug interactions in the treatment of various diseases are described, emphasising that the holistic management of older people and their pathologies should prevail over the individual treatment of each condition.


Assuntos
Antioxidantes , Polimedicação , Humanos , Idoso , Idoso de 80 Anos ou mais , Antioxidantes/uso terapêutico , Estresse Oxidativo , Envelhecimento , Homeostase
17.
RSC Adv ; 13(51): 35947-35963, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38090079

RESUMO

Protein-based therapeutics have revolutionized the pharmaceutical industry and become vital components in the development of future therapeutics. They offer several advantages over traditional small molecule drugs, including high affinity, potency and specificity, while demonstrating low toxicity and minimal adverse effects. However, the development and manufacturing processes of protein-based therapeutics presents challenges related to protein folding, purification, stability and immunogenicity that should be addressed. These proteins, like other biological molecules, are prone to chemical and physical instabilities. The stability of protein-based drugs throughout the entire manufacturing, storage and delivery process is essential. The occurrence of structural instability resulting from misfolding, unfolding, and modifications, as well as aggregation, poses a significant risk to the efficacy of these drugs, overshadowing their promising attributes. Gaining insight into structural alterations caused by aggregation and their impact on immunogenicity is vital for the advancement and refinement of protein therapeutics. Hence, in this review, we have discussed some features of protein aggregation during production, formulation and storage as well as stabilization strategies in protein engineering and computational methods to prevent aggregation.

18.
Brain Sci ; 13(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38002492

RESUMO

An autoimmune disease is the consequence of the immune system attacking healthy cells, tissues, and organs by mistake instead of protecting them. Inflammation and oxidative stress (OS) are well-recognized processes occurring in association with acute or chronic impairment of cell homeostasis. The transcription factor Nrf2 (nuclear factor [erythroid-derived 2]-like 2) is of major importance as the defense instrument against OS and alters anti-inflammatory activities related to different pathological states. Researchers have described Nrf2 as a significant regulator of innate immunity. Growing indications suggest that the Nrf2 signaling pathway is deregulated in numerous diseases, including autoimmune disorders. The advantageous outcome of the pharmacological activation of Nrf2 is an essential part of Nrf2-based chemoprevention and intervention in other chronic illnesses, such as neurodegeneration, cardiovascular disease, autoimmune diseases, and chronic kidney and liver disease. Nevertheless, a growing number of investigations have indicated that Nrf2 is already elevated in specific cancer and disease steps, suggesting that the pharmacological agents developed to mitigate the potentially destructive or transformative results associated with the protracted activation of Nrf2 should also be evaluated. The activators of Nrf2 have revealed an improvement in the progress of OS-associated diseases, resulting in immunoregulatory and anti-inflammatory activities; by contrast, the depletion of Nrf2 worsens disease progression. These data strengthen the growing attention to the biological properties of Nrf2 and its possible healing power on diseases. The evidence supporting a correlation between Nrf2 signaling and the most common autoimmune diseases is reviewed here. We focus on the aspects related to the possible effect of Nrf2 activation in ameliorating pathologic conditions based on the role of this regulator of antioxidant genes in the control of inflammation and OS, which are processes related to the progression of autoimmune diseases. Finally, the possibility of Nrf2 activation as a new drug development strategy to target pathogenesis is proposed.

19.
Mol Cell Biochem ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917279

RESUMO

The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is well recognized as a critical regulator of redox, metabolic, and protein homeostasis, as well as the regulation of inflammation. An age-associated decline in NRF2 activity may allow oxidative stress to remain unmitigated and affect key features associated with the aging phenotype, including telomere shortening. Telomeres, the protective caps of eukaryotic chromosomes, are highly susceptible to oxidative DNA damage, which can accelerate telomere shortening and, consequently, lead to premature senescence and genomic instability. In this review, we explore how the dysregulation of NRF2, coupled with an increase in oxidative stress, might be a major determinant of telomere shortening and age-related diseases. We discuss the relevance of the connection between NRF2 deficiency in aging and telomere attrition, emphasizing the importance of studying this functional link to enhance our understanding of aging pathologies. Finally, we present a number of compounds that possess the ability to restore NRF2 function, maintain a proper redox balance, and preserve telomere length during aging.

20.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833901

RESUMO

An imbalance between the formation of reactive oxygen species (ROS) and the reaction of antioxidant proteins is referred to as oxidative stress [...].


Assuntos
Antioxidantes , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...